因果関係と相関関係を区別させる統計的手法、「操作変数」に関するメモ

統計学
スポンサーリンク

因果関係と相関関係の区別を可能にする「操作変数」に関するメモ

 

「相関関係」と「因果関係」は異なる

・例:教育年数が賃金に与える影響

例えば教育と賃金の関係を示すものとして「ミンサー方程式」が知られており、以下のような式として示すことができます。

  • log Y = β0 + β1X + u

(Y=年収、X =教育年数、u=誤差項)

この式が意味するものは、「教育年数が1年増えると、年収が100×β1%上がる」というもの。

しかしながら、これはあくまでも「相関関係」を示しただけであり、教育年数が賃金へ影響を及ぼしているかの「因果関係」があるかはわかりません。以下に示すような問題があるからです。

・3つの問題

①:説明するXと説明されるYの因果関係が逆にもなる「逆の因果性」

例:

  • Y = a + bX + u なのに、X = α + βY + v の関係がある
  • 「警察が多いから犯罪が起きる」⇔「犯罪が多いから警察が多い」???
  • 「朝食を食べると学力が上がる」⇔「学力が上がると朝食を食べる」???
  • それぞれ、逆の因果関係を導き出せてしまう

 

②:説明するXと誤差項uとの間にも相関関係がある「内生性」(同時決定バイアス)

例:

  • 先ほどの、教育と収入の関係を示したミンサー関数「 log Y = β0 + β1X + u(Y=年収、X =教育年数、u=誤差項)」を考える。
  • この場合、[ 年収Y ]はその会社員の[ 能力 ]にも依存しているだろうし、[ 能力 ]と[ 教育年数X ]も相関している。
  • すなわち、[ 教育年数X ]と[賃金(年収) Y]は同時に決まっている(”同時に決まっている”ゆえ、「同時決定バイアス」と呼ぶ)。

 

③:交絡因子(因子・説明変数X以外の因子で、現象の発生に影響を与えるもののこと)の存在

例:

  • 例えば、飲酒とがんの関連性を調べようとする。この場合、がんを引き起こすとされる因子は、 [ 飲酒 ]以外にも[ 喫煙 ] などがガンの発生率に影響を与えているかもしれない。
  • この場合、喫煙が交絡因子に該当する。
  • その際は、喫煙が調査に影響を与えないよう、データを補正する必要がある。

f:id:idea_glue:20180425085806j:plain

これら①~③の問題は、相互作用が複雑に起こる社会現象、例えば病気や政治や経済、環境問題などでは頻繁に起こることであり、いかに適切に対処するかが課題となってきます。

 

因果関係を推定する「操作変数法」

これらの問題に対処するため、考案された統計的手法が「操作変数法」です。

操作変数法として最も良く知られている推定法としては、「二段階最小二乗法(Two Stage Least Squares, 2SLS)」があげられます。

(以下、書くのに疲れたので後日記入予定)

コメント